Planning for Cap Design and Construction during the RI/FS

Case Studies from Region 10

Karen Keeley, U.S. EPA Region 10
John Wakeman, U.S. Army Corps of
Engineers, Seattle

Objectives

- Present Information on How to Plan for Cap Design and Construction during the RI/FS
 - Describe types of design-related data that can be collected during the RI/FS
 - Describe data usefulness for improving remedy selection and remedy design
- Present 3 case studies, identifying key parameters leading to success and summarizing long-term monitoring results

Outline

- Three case studies
 - St. Paul Waterway kraft pulp and paper mill
 - Wyckoff/Eagle Harbor wood treater
 - Ketchikan Pulp Co (KPC) sulfite pulp mill
- Approach
 - Challenges
 - Solutions
 - Success Story
- Recommendations for RI pre-cap parameters

Location of St. Paul Cap, Tacoma, WA

Location of Wyckoff Cap, Eagle Harbor, WA

Location of KPC Cap, Ketchikan, AK

Risk Drivers and Selected Remedies

Site	Risk	CoC	Acres	Remedy
St. Paul	Benthos	Many	17	Full cap (4 to 20 ft)
Wyckoff	Benthos, Humans	PAH, Hg	69	Full cap (2 to 15 ft)
KPC	Benthos	Ammonia HS ⁻ 4-Methyl- phenol	27	Thin Layer Placement (6 to 12 inches)

Cap Completion

• Sediment cap (isolation)

- St. Paul Completed 1988

– Wyckoff (East OU)Completed 1994/2001

• Thin layer placement (amendment)

- KPC Completed 2001

Links for all sites at www.wyckoffsuperfund.com

St. Paul Cap

St. Paul

Challenges

- First regional, large sediment cap at a contaminated site
- Combined cleanup and habitat restoration (intertidal and subtidal)
- Erosion
- Concerns re: mixing of cap and underlying material

Solutions

- Gentle method of placement, shaker box
- Post-cap monitoring for accretion/erosion

St. Paul

Success Story

 Successful placement of 4 to 20 ft thick cap/mitigation layer; benthic recovery documented; typical mudflat community

• >10 years of monitoring data

- Intertidal visual inspections, bathymetric surveys, sediment deposition monitoring, chemical monitoring (seeps, gas vents, sediment), benthic community structure, algae
- Key Factor statistical analyses of benthic community (recovery occurred within 5 to 7 years)

Wyckoff

Challenges

- Liquid NAPL; soft sediments; slopes; seismicity

Solutions

- NAPL areas: 3 to 5-ft cap
- Soft sediments/Slopes: barge wash-off placement;
 variable cap thickness; capping started offshore (2 ft)
 towards inshore (up to 15 ft thick); displaced sediments
 moved inshore to thickest cap (natural canyon)
- Seismicity: O&M Plan inspections

Wyckoff

Success Story

- Long-term monitoring data since 1994; new monitoring for "final" remedy ongoing
- Benthic recovery documented and ongoing
- Recontamination from facility continued through 2001, when upland source control was completed
- No evidences of failure due to cap placement or recent
 6.8 earthquake
- One release of PAH when capping occurred outside recommended offshore-onshore capping sequence

Plan View of 2001 Wyckoff Cap

Cross Sections of Wyckoff 2001 Cap

KPC

Challenges

- Steep slopes (some >40%) and soft sediments (<3 to 20 psf)
- Deep waters (120 ft MLLW max)

Solutions

- Prior to ROD, performed field tests and preliminary engineering tests to improve remedy selection
- Due to pre-design data, was able to "tune" ROD to the site conditions in terms of remedy

KPC

- Solutions (continued)
 - Thin layer placement where feasible
 - Capping vs. mounding (RA acceptance areas)
 - 80% coverage as performance standard
 - Monitored natural recovery in areas with:
 - >40 percent slope
 - Very soft (6 psf) and thick (>5 ft) sediments
 - Depths >120 ft MLLW
 - Balance of costs and environmental benefits at greater depths

KPC

Success Story

- 100% successful thin layer placement (no mounding)
- Successful in waters to 120 ft MLLW
- Sediment displacements/admixture with placement layer (*in situ* tests) much less than engineering predictions (shear strength, slope analysis, water content)
- Few instances of WQC exceedances (DO, turbidity)
- Long-term monitoring -- starts in 2004 (sediment chemistry, bioassay, benthos)

Recommendations

- If contemplating a cap, selection of some geotechnical properties that may be collected during the RI: *vane shear*, *water content*, *grain size*, *density*
 - Little extra cost--if planned for (if cap contemplated)
 - Reduces the uncertainty for designers
 - Improves selection of suitable remedy
- Consider physical (slope, depth) and logistical (underpier) constraints
- Some engineering models may not reliably predict success of capping soft sediments

Some Relevant Geotech Parameters

Water content, ASTM D 2216	Key for very soft sediments
(or ASTM D 2488-Vis. Classif.)	
Density, ASTM D 2937	Input for both dredging and
	capping models
Grain Size Distribution, ASTM	% sand & % silt, or use
D 422	hydrometer for GSD for times
	when segregation could occur, as
	in cap material
Atterberg Limits, ASTM D 4318	Helps predict behavior of
	sediment to be capped
USCS classification, ASTM D	May permit estimation of other
2488 (Includes Water Content)	geotechnical characteristics
Specific gravity, ASTM D 854	May be valuable for sediments
	with wood or organic materials

References for Capping on Slopes and Soft Sediments

- Rollings, Marian, and Raymond Rollings. 1998.
 Observations on the New York Mud Dump Site.
 Proceedings of the 15th World Dredging Conference (two papers).
- Nelson, E., A. Vanderheiden and D. Schuldt, 1994. Eagle Harbor Superfund Project, in Proceedings of Dredging 94, 2cnd International Conference and Exhibition on Dredging and Dredged Material Placement.
- Design Analysis Report; Ketchikan Pulp Company. 2000. Prepared by Foster-Wheeler Environmental and Exponent.